A Binary Decision Tree Implementation of a Boosted Strong Classifier
نویسنده
چکیده
Viola and Jones [1] proposed the influential rapid object detection algorithm. They used AdaBoost to select from a large pool a set of simple features and constructed a strong classifier of the form {j αjhj(x) ≥ θ} where each hj(x) is a binary weak classifier based on a simple feature. In this paper, we construct, using statistical detection theory, a binary decision tree from the strong classifier of the above form. Each node of the decision tree is just a weak classifier and the knowledge of the coefficients αj is no longer needed. Also, the binary tree has a lot of early exits. As a result, we achieve an automatic speedup that always makes the rapid Viola and Jones algorithm rapider.
منابع مشابه
Unsupervised Learning of Boosted Tree Classifier Using Graph Cuts for Hand Pose Recognition
This study proposes an unsupervised learning approach for the task of hand pose recognition. Considering the large variation in hand poses, classification using a decision tree seems highly suitable for this purpose. Various research works have used boosted decision trees and have shown encouraging results for pose recognition. This work also employs a boosted classifier tree learned in an unsu...
متن کاملImprovement of Random Forest Classifier through Localization of Persian Handwritten OCR
The random forest (RF) classifier is an ensemble classifier derived from decision tree idea. However the parallel operations of several classifiers along with use of randomness in sample and feature selection has made the random forest a very strong classifier with accuracy rates comparable to most of currently used classifiers. Although, the use of random forest on handwritten digits has been ...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملEnsemble Learning with Decision Tree for Remote Sensing Classification
In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in t...
متن کاملEmpirical Study of Boosted Weak Classifier in Object Detection Problem
In this paper, we study the use of boosted weak classifiers selected with AdaBoost algorithm in object detection. Our work is motivated by the good performance of AdaBoost in selecting discriminative features and the effectiveness of Classification and Regression Tree (CART) compared with other classification methods. First, we study the cascaded structure of the boosted weak classifier detecto...
متن کامل